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1. Introduction

In the year 2000, Berkovits proposed a new formalism for the superstring with manifest
space-time supersymmetry that can be covariantly quantized [f[]. Since then, the formalism
has evolved to a point where multiloop superstring amplitudes are computed in a manifestly
super-Poincaré manner [ff] with relative easy when compared with the RNS formalism. In
the last five years there have been lots of consistency checks, and up to now the pure spinor
formalism has bravely survived. The last one of these checks was the agreement with the
RNS result for massless 4-point two-loop amplitudes [B-f] (see also [f]).

The one-loop agreement has already been considered in [f], where it was argued that
the pure spinor amplitude coincides with the RNS result of [J] for constant field-strength.
However, we will show that there are subtleties in the computation at zero momentum and
that the naive computation of [§] gives the wrong answer. In this paper we will perform
this computation for non-constant field-strength and will obtain complete agreement with
the RNS computation.

2. Massless 4-point one-loop amplitude in the pure spinor formalism

In [ Berkovits obtained the following formula for the massless 4-point one-loop amplitude
for the type-1IB superstring, which we rewrite in a slightly different fashion as,

27’
A= KF/ (IfniT)QFC(T), (2.1)

where F(7) is a modular invariant function defined by [[[(]

Fo(r) = m/sz2/d2z3/d224HG(Zi7Zj)k’ 5,
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G(zi, zj) is the scalar Green’s function and K is a kinematic factor which reads

K = [0 {0 076 (i) Ara () WalO) ™ W)L (6) +

+ perm(234) .

Using the same trick of [, where fleH(eT*I)fg_’ﬁ)l)ﬂﬁpl. .07 fo 3y is expressed as the

tree-level pure spinor correlator (A*A?AY(0)°D5 f,,5.), K can be rewritten as
K = ((0)°D>AAY MW (W) FL Y + perm(234). (2.2)

When all external states are in the Neveu-Schwarz sector (2.9) will be shown to coincide
with the well-known RNS result, i.e., K4 NS « tg F1F2F3F*, where the tg-tensor is defined

in [[IJ].
3. Equivalence with the RNS formalism

Since A,(#) and W<(#) are fermionic while F,,,(0) is bosonic, the contributions when
all external states are NS come from terms in which an odd (even) number of covariant
derivatives act upon the fermionic (bosonic) superfields. One therefore has

KNS — ()7 [20D% (04" " DW ) (0" DW) FL, +
+60DAAN M DW) (M DW3D2FL . +
+20DAAY (MM D3W YA DWHFL +
+20D(AAD (M DW2) Ay D3W3)ff;m] , (3.1)

where the spinor indices of (6)° are contracted with the covariant derivatives and the

combinatoric factors in (B.1]) come from the different ways of splitting up these five indices.
Using the following relations,

DI = L0 F o,
0°0° Do DpF™" = ik[m(W‘]t“H)ftu,
0910203 D, Doy Doy WP = —%(ymne)ﬁkm(e%ypqa)qu

0°10°20° Dy, Doy, Dy (VA) = 1% Fran(\7,0) (67™770) ,

where [{] Do = 94 + $kin(7™0)q and

(Evm0)(MY"0) — ian()\fypﬁ)((977”"1”9) 4.
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equation (B.1]) becomes,
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In [§] the authors ignored the last three lines of (B.9) by considering a constant field-strength
and have reported to obtain the correct RNS result. However, we will show that this does
not happen. Agreement with the RNS formalism is only obtained after summing up all
contributions in (B.3), and the inability to get the correct result supposing Fj,, constant
may be related to subtleties in amplitude computations at zero momentum, as will be
commented in the last section.

Using the identity v"~™ = ~™"P +77m["7p] one can check that three types of correlation
functions' will be needed to evaluate (B.9)

() (A" PO) (X170 (Byigi)) = Celrmmparst (3:3)
[m ¢n 7 58] [a g7, s][m sn sD)
+A[olsplesyor — oterarlmarat)] +

+B [Ut[iﬁv[qfs;ns} [m 2]513] - m[mv[mﬁnp”q%ﬁi}}

1 m
((D™™P6) (\1q8) (10 (09i580)) = == 1 a0} 5 (3.4)

70 la
1
(™0 (M "0)(X0)(07i510)) = 15505 - (3.5)
where A = —2B = Tio? C = ﬁ, as will be shown in the sequence. Furthermore, it

is not difficult to justify (B.4) and (B.§) by noting that they are the only possible linear
combinations of n,,, tensors that have the appropriate symmetries and are compatible with
the properties of the pure spinor A“. Moreover, they are normalized such that

((Aym0) (M) (A7p0) (07™70)) = 1. (3.6)
The following identity

1
()\,ymnpe)()\,yqrsa) - _ o ()\’Yadee)\)(H’Ymnp’}/abcde’}/qme)
1

= —_32 i ()\,}/abcdeA)(H,Ytuva)fg?gg;sv, (3.7)

will allow one to determine both coefficients A and B. From (B.7) it follows that

1

() (X ™"P0) (A7) (03i50)) = — 5

(3.8)

'In version 3 of @, equation (3.3) was not correctly obtained since all deltas in the right hand side were
ignored. Their identity for (3.4) was also wrong. After being informed of these facts, Pierre Vanhove has
independently obtained a much simpler way to obtain the coefficients A and B than the one presented here

IE)]



where the correlation function in the right hand side of (B.§) has already been determined,
up to terms involving Levi-Civita’s epsilons, to be [H]

((AYTPLX) (A" 0) (07910) (0j110)) = (3.9)
4 [m en r| su [m en ] cu 1 [m on rlu 1 [m on rlu
=% [5[]. oy 555[qf5915h] + 01y 05 83 00,01 01 — 507 OGSy Ju _ SO0 90k Jut |

In [{] it was argued that all terms containing Levi-Civita’s epsilons in the correlation
function (B.9) would not contribute to the two-loop amplitude under consideration and
were safely ignored. However, in the present application of (B.9) these epsilon-terms will
contribute non-epsilon terms to the left hand side of (B.§) when they are contracted with

epsilons contained in f/"P9"®

wbedetun- One therefore needs to determine them, which can be easily

done by considering the self-duality condition

1
,ygzﬁnpqr — memnpqrstuvm ('Ystuvm)aﬁ , (310)

because it will relate non-epsilon with epsilon terms in (B.9). Using (B.1() one can obtain
the complete correlation function (B.9) that, when written out explicitly, is given by

((AY™PTEN) (Ay0) (B5gn8) (0vjmi6)) = (3.11)
4 l hjk k hjl j hkl h kel hjkl
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U mnpqr mnpqr mnpqr g~ J “mnpqr | “mnpqr

1 hjl 1 hkl 1 hjk 1 hjl 1 hkl
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After finding the above identity one must obtain the explicit form of the f-tensor (B.7),
which is straightforward in principle, but tedious in practice. This task was done with the
Mathematica package GAMMA [[J], along with some custom-made functions to handle
Levi-Civita’s epsilons and duality relations for the gamma matrices. In particular, the
following identities were used,

( m1m2m3m4m5m6) B8 _ _i_iemlmzmsmzxmsmﬁnmgnsm ( ) B
Y T Yninansna) o
( m1m2m3m4m5m6m7) — __€m1m2m3m4m5m6m7n1n2n3( )
’7 aﬁ 3' r}/nlngng aﬁ
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Y a ol Tning o -

After determining the f-tensor one can obtain the correlation function (B.3) using

equation (B.§). The coefficients of (B.3) are then found to be A = —2B = ﬁ, C = ﬁ.



With these coefficients one can check that the following consistency condition between (B.3)
and (B.4)) is indeed satisfied,

(An®)(MY"PO) Xy ™20) (07i50)) = 2((MT"*0) (MP0) (X" 0)(035x0)).-

Using the identities (B.3),(B.4) and (B.5) the kinematic factor (B.9) can be straightfor-
wardly computed. After summing over the permutations, using momentum conservation,
(k%.eft) = 0 and expressing everything in terms of the Mandelstam variables u = —2(k!-k3)
and t = —2(k? - k3) only, the first line of (B-3) gives the following result:

—og (B )R AR ) = ()RR () (312)
o R (R Y )R ) )k ) )k )
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which is clearly seen not to be proportional to tgF1F2F3F*, as incorrectly claimed in [S[8
Repeating the same procedure for the second line of (B.9) one obtains:

1
56

1

+—(k2-e3)(k2- M) (K3 - ) (k* - el) + %(kzz e (K e (K3 et (k- eh) (3.13)
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which is again not proportional to tsF'F2F3F4. Note, however, that the sum of (513)
and (B.13) is:

(61 . 63)(62 . 64)u2 (61 X 62)(63 X 64)u2

which can be checked to be proportional to tgF1F2F3F4.
Repeating these same steps one can check that the last 2 lines of (B.9), after summing
over the permutations, will also independently add up to a combination proportional to the

RNS result. The equivalence with the RNS formalism, after summing up all contributions

in (B.9), is then established.

4. On the result

A few comments regarding the calculations done here can be made. There should be no
doubt that to obtain equivalence with the RNS result, all terms in (B.9) must be considered.
If the assumption of a constant field-strength is made and only the first term in (B.2) is
computed, one will obtain the wrong answer (B.12).

There are some possible explanations for this odd-looking fact, which certainly deserve
further investigation. The discussion in [1J] emphasizes the subtleties related to ampli-
tude computations at zero momentum and explains that naive computations give incorrect
results because of contact terms, and that the correct procedure is to analyticaly continue
computations at non-zero momentum.

There may be another possible subtlety that was overlooked in the computation of [§.
The polarization vector of a constant field-strength is given by e,,(X) = F,,, X", so one
is explicitly introducing the center-of-mass mode of X™ in the vertex operator. However,
as explained in [[I[4], the BRST cohomology is modified if one allows vertex operators and
gauge parameters involving the center-of-mass mode of X™. For example, one of the central
tenets of the pure spinor formalism is that the cohomology of the BRST operator Qprsr =
$ A\%d, at ghost number three is given by (A20°) = (My™0)(Ay"0)(AP0) (0 Yimnpt). However,



when the center-of-mass mode of X™ is present, the ghost number three cohomology of
QprsT turns out to be trivial because [[Lg],

(\36°) = Qprsr [Xm(we)(wa)(aymnpe)}. (4.1)

So to avoid the above subtleties, in this paper the kinematic factor of the massless 4-
point one-loop amplitude in the pure spinor formalism was computed with a non-constant
field-strength. Equivalence with the RNS formalism computation of [J] was correctly ob-
tained when all external particles are in the Neveu-Schwarz sector.
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